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ABSTRACT: This article presents the application of three
black-box modeling methods to two industrial polymeriza-
tion processes to predict the melt index, which is considered
an important quality variable determining product specifi-
cations. The modeling methods covered in this study are
support vector machines (SVMs; known as state-of-the-art
modeling methods), partial least squares (PLS), and artificial
neural networks (ANNs); the processes are styrene–acrylo-
nitrile (SAN) and polypropylene (PP) polymerizations cur-
rently operated for commercial purposes in Korea. Brief
outlines of the modeling procedure are presented for each
method, followed by the procedures for training and vali-
dating the models. The SVM models yield the best predic-
tion performances for both the SAN and PP polymerization
processes. However, the ANN models fail to accurately

predict the melt index when sufficient data are not available
for model training in the PP polymerization process. The
PLS models are not effective either when applied to the SAN
polymerization process, for which the melt index has strong
nonlinear functionality with the process variables. The good
prediction performance that the SVM models show despite
the insufficient data or strong process nonlinearity suggests
that SVMs can be effectively used as alternative to PLS or
ANNs for modeling the melt indices in other polymerization
processes as well. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci
95: 967–974, 2005
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INTRODUCTION

The melt index of thermoplastic polymers such as
polyethylene (PE), polypropylene (PP), and polysty-
rene (PS) is defined as the mass rate of extrusion flow
through a specified capillary under prescribed condi-
tions of temperature and pressure.1 Because the index
determines the flow properties as well as other me-
chanical properties of polymer products, it is consid-
ered one of the important quality variables in the
manufacturing process. The measurements of the melt
index are used to control the process operating condi-
tions to meet a desired quality of the intermediate or
final products.2

However, the direct measurement of the melt index
in the laboratory is not only costly but also time-
consuming and so cannot be conducted frequently
enough in practice for proper quality control. Some-

times, these problems make the real-time control of
the product quality difficult or even impossible and,
therefore, yield off-spec products, resulting in enor-
mous economic losses. Hence, many researchers have
strived to infer the melt index indirectly with mathe-
matical models that relate the melt index to other
readily measurable process variables. Such modeling
approaches have gained increasing feasibility and suc-
cess on the basis of real-time database systems (RT-
DBs), which have become widely available in the
chemical industry with the rapid growth of informa-
tion technology. Now we are able to model and ana-
lyze polymerization processes more cheaply and
quickly with the huge amount of measurement data
stored in the RTDBs.

The modeling approaches for the prediction of the
melt index can be divided into the following two
categories: the mechanistic modeling approaches
based on physicochemical principles such as material
and energy balances and the black-box modeling ap-
proaches based on process operational data from
which the input/output functionality can be found
with supervisory learning methods such as artificial
neural networks (ANNs), partial least squares (PLS),
or support vector machines (SVMs). Because this arti-
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cle deals with the prediction of the melt index on the
basis of process operation data, we focus only on the
black-box modeling methods.

Several works have been carried out to predict melt
indices with various types of modeling methods. Ohs-
hima et al.3 provided an extensive review of the esti-
mation models for polymer properties including the
melt index, density, and molecular weight, focusing
on the online soft-sensing and optimal-grade
changeover control problems for a PE polymerization
process. McAuley and MacGregor4 presented theoret-
ically based models for the online estimation of the
melt index and the density in a fluidized-bed ethylene
copolymerization reactor. They developed a recursive
technique for updating model parameters for the on-
line use of their models and reported successful pre-
dictions of the melt index and the density.

In this article, we aim to compare the performances
of three black-box modeling methods (SVMs, PLS, and
ANNs) for the prediction of the melt indices in two
polymerization processes [styrene–acrylonitrile (SAN)
and PP]. Unlike PLS or ANNs, SVMs have only re-
cently been introduced and reported to yield success-
ful results in various modeling fields.5–7 To the best of
our knowledge, however, the application of SVMs to
polymerization processes has not been reported in the
open literature so far; this article appears to be the first
to report the use of an SVM for modeling polymeriza-
tion processes and to compare its performance with
the other modeling methods. As is clear from the
results to be presented later, the SVM models outper-
formed the other models in predicting the melt indices
of the SAN and PP polymerization processes, and this
has led us to recommend their use in other polymer-
ization processes as well.

MELT INDEX MODELING

In this study, three black-box modeling methods
(SVMs, PLS, and ANNs) have been used to predict the
melt index in the polymerization processes. The SVMs
and ANNs are capable of constructing both linear and
nonlinear models, but the PLS builds only a linear
model. Details on these black-box modeling methods
for the melt index are presented in the following.

SVMs

SVMs have been known as very powerful modeling
algorithms used to solve classification problems since
Vapnik et al.8 proposed this modeling (learning) strat-
egy. Because the formulation of SVMs is based on
structural risk minimization rather than empirical risk
minimization, which is employed by other conven-
tional black-box modeling algorithms, including
ANNs and PLS, the SVMs typically perform better
than the conventional algorithms.9 In addition, an

SVM uses a hypothesis space of linear functions in a
high dimensional feature space, trained by solving a
convex quadratic optimization problem, and so a
global solution is always guaranteed in locating its
model parameters. SVMs have a few tunable param-
eters, such as the capacity constant to control the
complexity of functions and the type of kernel func-
tion used for transforming the original input space
into a high dimensional feature space. For these rea-
sons, SVMs have become increasingly popular alter-
natives to ANNs.

Recently, the concept of SVMs has been extended to
the domain of regression problems.10 Solving a regres-
sion problem with SVMs is called support vector re-
gressions (SVRs), and their applications to many re-
gression problems have yielded excellent performanc-
es.5–7 In this study, a brief sketch of the SVR algorithm
is provided; a more detailed description can be found
in the literature.11

In a regression problem with an SVM, given a train-
ing data set of n samples, for which X is equal to [x1,
x2, …, xn]T (the matrix of the measured process vari-
ables) and y is equal to [y1, y2, …, yn]T (the vector of the
measured melt index), the unknown functionality is
approximated with a finite number of parameters as
follows:

ŷ � f�x,�,�*� � �
i�1

n

��*i � �i� K�x,xi� � b (1)

where ŷ denotes the predicted melt index, � and �* are
the Lagrange multipliers, and K(x,z) is the kernel func-
tion, which maps the input space X implicitly to a
feature space. The kernel can be chosen from various
types of kernel functions, such as a linear kernel
[K(x,z) � xz], a polynomial kernel [K(x,z) � (xTz)d], or
a radial bias function (RBF) kernel [K(x,z) � exp(��x
� z�2/(2�2) where � is the width of Gaussian]. In this
study, the RBF kernel is adopted to model the melt
index because it is frequently used for various regres-
sion problems for its high resolution power.5–7 � and
�* are obtained by the solution of the following con-
strained quadratic programming (QP) problem:

min J��,�*� � ��
i�1

n

��*i � �i� � �
i�1

n

yi��*i � �i�

�
1
2�

i�1

n �
j�1

n

��*i � �i���*j � �j� K�xi,xj� (2)

subject to

0 � �*i � C i � 1, 2,· · ·,n (3)
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0 � �i � C i � 1, 2,· · ·,n (4)

�
i�1

n

�*i � �
i�1

n

�i (5)

where C (the capacity constant) and � (the size of the
�-insensitive zone of an �-insensitive loss function11)
are two tuning parameters used to control the gener-
alization ability of the approximated function [eq. (1)].
They should be adequately determined to obtain good
prediction results. In this study, a crossvalidation
method12 has been used, in which the optimal perfor-
mance is assessed with a separate validation set of the
process variables and the melt index. The solutions of
the optimization problem described by eqs. (2)–(5) are
the vectors �* and �. Most elements of these solution
vectors vanish, and the data samples corresponding to
non-zero values of �i

* and �i are called the support
vectors. The bias term b in eq. (1) can be calculated
from s training data pertaining to the support vectors
obtained as the optimization solutions, and it is a
unique constant that minimizes the error over the
training data set:

min L�b� � �
j�1

s

�yj � � � �
i�1

n

��*i � �i� K�x,xi� � b�2 (6)

To efficiently solve the QP problem described by eqs.
(2)–(5), several types of optimization algorithms have
been proposed for SVMs. In this study, the sequential
minimal optimization algorithm13 with a decomposi-
tion method is employed; it decomposes a large QP
problem into a series of smaller QP subproblems.

PLS

PLS has been widely used as a powerful modeling
method for constructing black-box models from labo-

ratory and field measurement data.14,15 It typically
provides more robust and reliable models than ordi-
nary least-squares methods, particularly when the
data are noisy and highly correlated with each oth-
er.12,16 The basic concept of PLS regression is to project
the high dimensional spaces of the input and output
data obtained from a process onto the low dimen-
sional feature (latent) spaces and then to find the best
relation between the feature vectors. It is capable of
dealing with singular and highly correlated regression
problems, which the traditional multiple linear regres-
sion methods cannot handle. In addition, it enables the
modeling results to be easily interpreted by providing
helpful information in the form of scores, loadings,
and regression coefficients.

The first step in PLS modeling is to arrange the
measurements on v process variables and one quality
variable (melt index) at n different sampling times into
X � [x1, x2, …, xn]T and y � [y1, y2, …, yn]T, respec-
tively. Then, after being scaled and mean-centered,
each X and y are decomposed as a sum of a series of
rank-one matrices or vectors according to the follow-
ing outer relations:

X � �
i�1

a

tipi
T � E (7)

y � �
i�1

a

uiqi
T � f (8)

where ti and ui represent the input and output score
vectors, respectively. They are calculated sequentially
from the data for each latent variable i (also called the
PLS dimension). The loading vector (pi) and value of qi

show the influences of X and y, respectively. All the
score and loading vectors are determined so that both
the residual matrix (E) and the residual vector (f) are
minimized.

Figure 1 Schematic of SAN polymerization.
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After the outer relations are obtained, the following
linear model is assumed to describe the inner relation-
ship between each ti and ui:

ui � citi � hi i � 1, 2,· · ·, a (9)

The regression coefficient (ci) is determined by the
minimization of the residual (hi) for each latent vari-
able i and can be grouped into a diagonal matrix (C),
with the off-diagonal elements set equal to zero. Com-
bining eqs. (7)–(9) into one equation, we can obtain the
following PLS prediction equation:

ŷ � �
i�1

a

ticiqi
T � TCqT � X�PT��1CqT (10)

where T is equal to [t1, t2, …, ta], P is equal to [p1, p2,
…, pa], q is equal to [q1, q2, …, qa], and ŷ is equal to [ŷ1,
ŷ2, …, ŷn] (the vector of the predicted values of the
melt index). In the previous equation, the total num-
ber of latent variables (a) is the only tuning parameter
determined by means of crossvalidation12 and is typ-
ically much lower than the number of process vari-
ables (v). The regression coefficients (C) are deter-
mined from the underlying PLS regression model and
can be used to interpret how the process variables (X)
are correlated to the quality variable (melt index; y).
Typically, the most instructive method for calculating
the PLS parameters, including the scores, loadings,
and regression coefficients, is known as the nonlinear
iterative PLS algorithm,12 in which the PLS parame-
ters are computed sequentially for each latent vari-
able.

ANNs

ANNs are widely used for modeling the nonlinear
behavior of a process because they allow a great deal
of flexibility in determining model structures. They
typically give good modeling performances when
there is a sufficient amount of data.14,17,18 An ANN
consists of a number of interconnected computing
processors called neurons or nodes, which are
grouped into input, hidden, and output layers. The
strengths of the connections among the nodes are
called the weights and are adjusted with a suitable
learning algorithm to yield good agreement with the
observed output. Various types of ANNs have been

Figure 2 Results of melt index modeling (a) with the SVM
method, (b) with the PLS method, and (c) with the ANN
method for SAN polymerization: ( � � � ) measured values
and (—) predicted values.

970 HAN, HAN, AND CHUNG



proposed that differ in their structures and learning
algorithms.19

In this study, the melt index is modeled with a
feed-forward network with one hidden layer and the
following representation of the function:

ˆy � f�2���
i�1

h

wi
�2�fi

�1��xTWi
�1� � bi

�1�� � b�2�� (11)

In eq. (11), x denotes the vector of the process variables
of size v, ŷ is the melt index to be predicted, and h is
the number of nodes in the hidden layer. The transfer
function for each hidden node is the sigmoid function
represented by fi

(1)(z) � 1/[1 � exp(�z)], and that for
the output node is the pure linear function f(2)(z) � z.
Because the primary structure of the neural network is
constructed by the number of hidden layers and the
types of transfer functions being fixed, the only tuning
parameter to be sought is h. The model coefficients are
the weights (W � [w1

(1), w2
(1), …, wh

(1)] and [w1
(2), w2

(2), …,
wh

(2)]) and the biases (b � [b1
(1), b2

(1), …, bh
(1)] and b(2)).

Given a training data set of n samples (X � [x1, x2, …,
xn]T and y � [y1, y2, …, yn]T), the model coefficients
(the weights and the biases) are determined so that the
following least-squares objective function is mini-
mized:

min J�W,b� � �
i�1

n

�yi � ŷi�
2 (12)

Generally, the weights and biases in this type of feed-
forward network are determined with a backpropaga-
tion training algorithm.20 It has been shown that the
network described by eq. (11) can approximate virtu-
ally any function of interest to any degree of accuracy,
as long as enough hidden units are available.21 For this
kind of multilayer network, however, it is not easy to
determine the optimal structure and parameters be-

cause the typical minimization process suffers from
the existence of many local minima.17,20

RESULTS AND DISCUSSION

The black-box modeling methods addressed in the
preceding section are applied to the prediction of the
melt indices in two industrial polymerization pro-
cesses: SAN and PP polymerization processes being
currently operated for commercial purposes in Korea.
In this section, the modeling and prediction results are
analyzed, compared, and discussed.

SAN polymerization process

Figure 1 shows the schematic diagram of an SAN
polymerization process currently operated for com-
mercial purposes in Korea. The process is capable of
producing about 50,000 tons of SAN copolymer per
year. First, styrene and acrylonitrile monomers are fed
into the first reactor, in which about half of them are
polymerized into the SAN copolymer. In the second
reactor, the rest of them are further polymerized to
achieve over 75% conversion of the styrene. The mix-
ture of the polymer and the monomers is conveyed
into the devolatilizer, in which the excess monomers
and solvents are recovered. The polymer products are
screened through the static mixer to remove impuri-
ties and then are stored in silos. The process typically

TABLE I
Optimal Tuning Parameters and CPU Time

Modeling method
Tuning parameters

and CPU time

SAN
polymerization

process

PP
polymerization

process

C 9.0 1.1
SVM � 0.02 0.1

CPU time 5.4 s 1.5s

PLS
a 10 5

CPU time 0.2 s 0.2s

ANN
h 5 8

CPU time 33.8 s 57.9s

The CPU time is the time required to train a model with the optimal tuning parameters and was measured on a Pentium
4.2-GHz machine.

TABLE II
RSMEs for the Models for Melt Indices

Modeling method

RMSE for the testing data sets

SAN
polymerization

process

PP
polymerization

process

SVM 0.97 1.51
PLS 3.15 2.08
ANN 1.09 3.07
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produces products of about eight different grades,
which are altered more than five times per month.

The first step in black-box modeling is to prepare a
set of training data measured on the target process of
interest. The process variables, such as the tempera-
tures, pressures, and levels, are measured every
minute and stored in the RTDB, whereas the quality
variables, including the melt index, are measured ev-
ery 4 h and stored in the laboratory information man-
agement system (LIMS). A total of 33 process variables
have been selected as the independent variables for
modeling the melt index. Because the quality variables
are measured much less frequently than the process
variables, moving averages of the measurements on
the process variables have been taken over a 4-h pe-
riod before each sampling time for the quality vari-
ables. A principal component analysis (PCA)22 has
been employed to eliminate statistical outliers that
might result from faulty measurements or abnormal
operation to finally obtain a total of 1024 training data
(measured for 4096 h). Apart from the training data, a
total of 100 testing data (measured for 400 h) have
been used to tune and verify each of the SVM, PLS,
and ANN models and to compare their performances.
Table I summarizes the optimal tuning parameters
used for model training to yield the smallest predic-
tion errors for the testing data of the SAN polymer-
ization process.

Figure 2(a–c) compares the measured values with
the predicted ones from the SVM, PLS, and ANN

models, respectively, for the SAN polymerization pro-
cess. The prediction performances of the three models
can also be assessed from Table II, which lists the
root-mean-squared errors (RMSEs) between the mea-
sured and predicted values of the melt indices defined
as follows:

RMSE � ��
i�1

n

�ŷi � yi�/n (13)

As shown in the figures and the table, the SVM model
yields the best prediction performance: most pre-
dicted values track the measured ones very closely
throughout the observation period in Figure 2(a), and
its RMSE is the smallest of the three models in Table II.
In contrast, the PLS model predictions show large
deviations from the measured values, especially for
the observation numbers up to 18 in Figure 2(b). Fur-
thermore, the RMSE for the PLS model is more than
three times larger than that of the SVM model. On the
other hand, the ANN model shows a prediction per-
formance comparable to that of the SVM with respect
to the tracking performance shown in Figure 2(c) and
the slightly larger RMSE in Table II.

For this SAN polymerization process, the SVM and
ANN modeling yield excellent performances, whereas
the PLS modeling results in the worst performance.
This can be ascribed to the strong nonlinear function-

Figure 3 Schematic of PP polymerization.
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ality that the melt index has with the operating vari-
ables of the SAN process: the nonlinear SVM and
ANN models can capture the nonlinearity, and the
inherently linear PLS model cannot. The SVM model
shows a slightly better performance than the ANN
model, but the difference is not conspicuous. How-
ever, much more effort is required to obtain the final
ANN model than the SVM model: the optimization
problem described by eq. (12) is plagued by numerous
local minima and so needs more trial runs with dif-
ferent initial guesses and a longer CPU time (33.8 s)
per run to reach a near global minimum, as shown in
Table I. On the other hand, the convex quadratic op-
timization problem described by eqs. (2)–(5) for the
SVM model only requires a single run with a shorter
CPU time (5.4 s) to locate the global minimum.11

PP polymerization process

Figure 3 depicts a PP polymerization process currently
operated for commercial purposes in Korea. This pro-
cess has a capability of manufacturing about 210,000
tons of PP per year. The process consists of four con-
tinuous reactors in series and other miscellaneous util-
ity units. Propylene and hydrogen are fed as the reac-
tants into each reactor, but the catalyst is added only
to the first reactor along with the solvent. The poly-
merization reaction takes place in a liquid phase in the
first two reactors and is completed in a vapor phase in
the third and fourth reactors to produce the powdered
polymer product. Then, after passing through the
dryer and the pelletizer in sequence, the polymer
powder is stored in the silos. The PP polymerization
process produces products of about 40 different
grades, which are altered more than 10 times per
month. In addition, the process alternately uses two
types of catalysts, showing different behaviors de-
pending on the catalyst type. The product quality is
managed through the control of the density and melt
index of the polymer products in the process.

To prepare a set of modeling data, we retrieve the
measurements of the process and quality variables
from the RTDB and LIMS for the PP polymerization
process. The process variables are measured every
minute, and the quality variable (the melt index) is
measured every 4 h. A total of 78 process variables are
selected as the independent variables. Similarly to the
SAN polymerization process, the moving averages of
the measurements of the process variables are taken
over a 4-h period before each sampling time for the

Figure 4 Results of melt index modeling (a) with the SVM
method, (b) with the PLS method, and (c) with the ANN
method for PP polymerization: ( � � � ) measured values and
(—) predicted values.
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quality variable. A PCA is also applied to remove
statistical outliers to get a total of 467 training data
(measured for 1868 h). Then, a separate set of 50
testing data (measured for 200 h) is newly prepared
for the verification and performance comparison of
the models. The optimal tuning parameters with
which the final SVM, PLS, and ANN models for the PP
polymerization process are trained are shown in Table I.

Figure 4(a–c) and Table II show the prediction re-
sults from the SVM, PLS and ANN models, respec-
tively, for the PP polymerization process. The results
clearly show that the SVM model gives the best pre-
diction performance of the three models. The pre-
dicted values of the melt index show quite good
matches with the measured ones in Figure 4(a), and
this is quantitatively supported by the smallest RMSE
value (1.51) in Table II. Contrary to the SAN polymer-
ization process, the PLS model shows a reasonable
prediction performance, but it is not as good as the
SVM model for the PP polymerization process, as
shown in Figure 4(b) and Table II. However, the ANN
model yields a very poor performance: the predictions
deviate significantly from the measurements in Figure
4(c), and the RMSE value is twice as large as that of the
SVM model in Table II.

Because typically a large amount of data is need for
ANN modeling, the poor prediction performance of
the ANN model can be explained by the insufficient
data available for training the model for the PP poly-
merization process. The number ratio of the measure-
ments to the input variables is only about 6 for the PP
polymerization process, whereas the ratio reaches
about 33 for the SAN polymerization process, for
which the ANN model shows good prediction perfor-
mance. Notwithstanding the scarce training data,
however, the SVM model yields good prediction per-
formance and a much shorter CPU time (1.5 s), and
this suggests that it can be successfully applied to
modeling a variety of polymerization processes.

CONCLUSIONS

The melt indices in the SAN and PP polymerization
processes have been modeled with three black-box
modeling techniques (SVMs, PLS, and ANNs.) This
application of the SVMs to modeling polymerization
processes is the first attempt reported in the open
literature. The SVM models give the best prediction
performances for both the SAN and PP polymeriza-
tion processes. The ANN models fail to accurately
predict the melt index when sufficient data are not

available for model training in the PP polymerization
process. The PLS models are not effective either when
applied to the SAN polymerization process, in which
the melt index has strong nonlinear functionality with
the process variables. The good prediction perfor-
mance that the SVM models have shown despite the
insufficient data or strong process nonlinearity sug-
gests that the SVMs can be effectively used for mod-
eling the melt indices in other polymerization pro-
cesses as well.
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and Engineering Foundation through the Advanced Envi-
ronmental Biotechnology Research Center at Pohang Uni-
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